3,369 research outputs found

    Medical Marijuana and Pharmacy Practice

    Get PDF
    By way of the Compassionate Care Act of 2014, New York has become the 23rd state to create a process that will permit patients suffering from a “serious condition” to receive medical marijuana (or “cannabis”). Among those, it is the second state to prohibit the crude delivery system of smoking (Minnesota), and the third to involve pharmacists in the dispensing process (Connecticut and Minnesota). Because virtually every practicing pharmacist in New York will be caring for patients receiving some form of cannabinoid therapy, it is important to discuss the basic outlines established by the law and regulations

    The effect of renovation of long-term temperate grassland on N2O emissions and N leaching from contrasting soils

    Get PDF
    pre-printRenovation of long-term grassland is associated with a peak in soil organic N mineralisation which, coupled with diminished plant N uptake can lead to large gaseous and leaching N losses. This study reports on the effect of ploughing and subsequent N fertilisation on the N2O emissions and DON/NO3− leaching, and evaluates the impact of ploughing technique on the magnitude and profile of N losses. This study was carried out on isolated grassland lysimeters of three Irish soils representing contrasting drainage properties (well-drained Clonakilty, moderately-drained Elton and poorly-drained Rathangan). Lysimeters were manually ploughed simulating conventional (CT) and minimum tillage (MT) as two treatments. Renovation of grassland increased N2O flux to a maximum of 0.9 kg N2O–N ha− 1 from poorly-drained soil over four days after treatment. Although there was no difference between CT and MT in the post-ploughing period, the treatment influenced subsequent N2O after fertiliser applications. Fertilisation remained the major driver of N losses therefore reducing fertilisation rate post-planting to account for N mineralised through grassland renovation could reduce the losses in medium to longer term. Leaching was a significant loss pathway, with the cumulative drainage volume and N leached highly influenced by soil type. Overall, the total N losses (N2O + N leached) were lowest from poorly and moderately draining soil and highest for the well draining soil, reflecting the dominance of leaching on total N losses and the paramount importance of soil properties

    ACCURACY OF BODY MASS PREDICTION USING SEGMENTAL INERTIA PARAMETERS MODELLED FROM PHOTOGRAPHIC IMAGES

    Get PDF
    The aim of this study was to evaluate the accuracy between the measured and predicted body mass, using the methods of Gittoes et al. (2009), and investigate the relationship between mass and stature and this accuracy. Fifteen male, recreational athletes from a university’s sporting population took part in the study. Measured whole-body masses were compared with predicted whole-body masses calculated using photographic dimensional data and an inertia model. Mean absolute error between measured and predicted whole-body mass was 5.42 ± 2.92 %. A strong, negative correlation between measured whole-body mass and relative % error (r = -0.80) and a normalising value and relative % error was found. It is suggested that for similar participants errors could be up to ± 10% for participants with body masses much greater or less than 71 kg or normalising values equating to 1230 Nm

    THE INFLUENCE OF EXPERIENCE ON KINETIC CHARACTERISTICS OF THE LOOPED LONGSWING

    Get PDF
    The aim of this study was to increase understanding of the strategies performers use to complete the looped longswing (LLS) in order to provide useful information for the development of this skill. For an elite gymnast and two novice performers, kinematic and kinetic data were collected during 5 series of three LLS (CODA motion analysis system, 200 Hz; instrumented high bar, 1 kHz). Inverse dynamics were employed to determine joint kinetics during the second LLS in each trial for each performer. The elite gymnast performed positive work at the hips during the ownswing resulting in hip flexion, which facilitated the control of proceeding functional phase actions. Peak shoulder power values were highest for the elite gymnast and lowest for the least experienced novice participant

    Changes in joint kinetics during learning the longswing on high bar

    Get PDF
    Biomechanics helps us understand the association between technique changes and performance improvement during learning. The aim of this research was to investigate joint kinetic characteristics of technique during learning of the longswing on the high bar. Twelve male, novice participants took part in the learning study. During swing attempts in 8 weekly testing sessions, kinematic data were collected. Inverse dynamics analysis was performed from known zero forces at the toes to quantify joint moments and power at the hips and shoulders. Key biomechanical constraints that limited performance outcome were identified based on changes in joint kinetics during learning. These constraints were the ability to perform a large shoulder power and to overcome passive kinetics acting during the downswing. Constraints to action at the level of joint kinetics differentially challenge learners and therefore could underpin more individual, specific learning interventions. Functional phases, defined by maximum hyperextension to flexion of the hips and maximum flexion to extension of the shoulders, did not describe the key joint kinetics of the hip and shoulder for novices. The functional phases may serve however to identify novices that were unable to overcome the passive kinetic constraint

    Biomechanical energetic analysis of technique during learning the longswing on high bar

    Get PDF
    Biomechanical energetic analysis of technique can be performed to identify limits or constraints to performance outcome at the level of joint work, and to assess the mechanical efficiency of techniques. The aim of this study was to investigate the biomechanical energetic processes during learning the longswing on the high bar. Twelve male, novice participants took part in a training study. Kinematic and kinetics data were collected during swing attempts in eight weekly testing sessions. Inverse dynamics analysis was performed from known zero forces at the toes. Joint work, total energy, and bar energy were calculated. Biomechanical constraints to action, that is, limits to novice performance, were identified as “total work” and “shoulder work”. The most biomechanically efficient technique was associated with an onset of the hip functional phase and joint work that occurred between 10–45° before the bottom of the swing. The learning of gross motor skills is realised through the establishment of a set of techniques with task specific biomechanical constraints. Knowledge of the biomechanical constraints to action associated with more effective and efficient techniques will be useful for both assessing learning and establishing effective learning interventions

    Implementing Pharmacy Informatics in College Curricula: The AACP Technology in Pharmacy Education and Learning Special Interest Group

    Get PDF
    Many professional organizations have initiatives to increase the awareness and use of informatics in the practice of pharmacy. Within education we must respond to these initiatives and make technology integral to all aspects of the curriculum, inculcating in students the importance of technology in practice. This document proposes 5 central domains for organizing planning related to informatics and technology within pharmacy education. The document is intended to encourage discussion of informatics within pharmacy education and the implications of informatics in future pharmacy practice, and to guide colleges of pharmacy in identifying and analyzing informatics topics to be taught and methods of instruction to be used within the doctor of pharmacy curriculum

    Multidimensional joint coupling: a case study visualisation approach to movement coordination and variability

    Get PDF
    A case study visualisation approach to examining the coordination and variability of multiple interacting segments is presented using a whole-body gymnastic skill as the task example. One elite male gymnast performed 10 trials of 10 longswings whilst three-dimensional locations of joint centres were tracked using a motion analysis system. Segment angles were used to define coupling between the arms and trunk, trunk and thighs and thighs and shanks. Rectified continuous relative phase profiles for each interacting couple for 80 longswings were produced. Graphical representations of coordination couplings are presented that include the traditional single coupling, followed by the relational dynamics of two couplings and finally three couplings simultaneously plotted. This method highlights the power of visualisation of movement dynamics and identifies properties of the global interacting segmental couplings that a more formal analysis may not reveal. Visualisation precedes and informs the appropriate qualitative and quantitative analysis of the dynamics

    Institutional maintenance of macroeconomic equilibrium and well-being

    Get PDF
    Goodwill component changes the pricing mechanism and gives the production of knowledge marketable character, complementing its with cognitive component. The paper substantiates the need to institute a regulated competitive market order as the search strategy of social sustainable balance consolidated on the basis of the reproduction cognitive capital process

    Global atmospheric budget of acetaldehyde: 3-D model analysis and constraints from in-situ and satellite observations

    Get PDF
    We construct a global atmospheric budget for acetaldehyde using a 3-D model of atmospheric chemistry (GEOS-Chem), and use an ensemble of observations to evaluate present understanding of its sources and sinks. Hydrocarbon oxidation provides the largest acetaldehyde source in the model (128 Tg a<sup>−1</sup>, a factor of 4 greater than the previous estimate), with alkanes, alkenes, and ethanol the main precursors. There is also a minor source from isoprene oxidation. We use an updated chemical mechanism for GEOS-Chem, and photochemical acetaldehyde yields are consistent with the Master Chemical Mechanism. We present a new approach to quantifying the acetaldehyde air-sea flux based on the global distribution of light absorption due to colored dissolved organic matter (CDOM) derived from satellite ocean color observations. The resulting net ocean emission is 57 Tg a<sup>−1</sup>, the second largest global source of acetaldehyde. A key uncertainty is the acetaldehyde turnover time in the ocean mixed layer, with quantitative model evaluation over the ocean complicated by known measurement artifacts in clean air. Simulated concentrations in surface air over the ocean generally agree well with aircraft measurements, though the model tends to overestimate the vertical gradient. PAN:NO<sub>x</sub> ratios are well-simulated in the marine boundary layer, providing some support for the modeled ocean source. We introduce the Model of Emissions of Gases and Aerosols from Nature (MEGANv2.1) for acetaldehyde and ethanol and use it to quantify their net flux from living terrestrial plants. Including emissions from decaying plants the total direct acetaldehyde source from the land biosphere is 23 Tg a<sup>−1</sup>. Other terrestrial acetaldehyde sources include biomass burning (3 Tg a<sup>−1</sup>) and anthropogenic emissions (2 Tg a<sup>−1</sup>). Simulated concentrations in the continental boundary layer are generally unbiased and capture the spatial gradients seen in observations over North America, Europe, and tropical South America. However, the model underestimates acetaldehyde levels in urban outflow, suggesting a missing source in polluted air. Ubiquitous high measured concentrations in the free troposphere are not captured by the model, and based on present understanding are not consistent with concurrent measurements of PAN and NO<sub>x</sub>: we find no compelling evidence for a widespread missing acetaldehyde source in the free troposphere. We estimate the current US source of ethanol and acetaldehyde (primary + secondary) at 1.3 Tg a<sup>−1</sup> and 7.8 Tg a<sup>−1</sup>, approximately 60{%} and 480% of the corresponding increases expected for a national transition from gasoline to ethanol fuel
    corecore